咪唑類離子液體的黏度低、電導(dǎo)率高。自1-乙基-3-甲基咪唑四氟硼酸鹽(EMIBF4)后,咪唑類離子液體發(fā)展迅速。
1-丁基-3-甲基咪唑類(BMI+)離子液體由于黏度低、電導(dǎo)率相對(duì)較高,易合成,得到了廣泛的研究。B.Andrea等用1-丁基-3-甲基咪唑六氟磷酸鹽(BMIPF6)和1-丁基3-丁基咪唑四氟硼酸鹽(BMIBF4)作為活性炭(AC)/聚三甲基噻吩(pMeT)混合電容器的電解液。與有機(jī)電解液(PC-EtNBF4)電容器相比,離子液體電容器在60℃時(shí)的比能量、功率密度及電流效率較高。
高黏度是離子液體走向工業(yè)化應(yīng)用的主要障礙之一。在低溫下具有相當(dāng)高的電導(dǎo)率和低黏度的1-乙基-3-甲基咪唑氟化鹽(EMIF 2.3HF)用于超級(jí)電容器電解質(zhì)的研究較多。U.Makoto等用EMIF 2.3HF作為電解液,與1mol/LEt3MeNBF4/PC電解液進(jìn)行對(duì)比實(shí)驗(yàn)。在25℃下,前者的電導(dǎo)率可達(dá)100mS/cm,后者為13mS/cm。采用EMIF 2.3HF離子液體的超級(jí)電容器,內(nèi)阻相對(duì)較低(在水系和有機(jī)系電解液之間),電容即使在低溫時(shí)都高于常見的EMIBF4離子液體超級(jí)電容器。EMIF 2.3HF的分解電壓僅為2V左右,導(dǎo)致能量密度過低;在70℃以上時(shí),循環(huán)性能和熱穩(wěn)定性能(約77℃開始失重)不理想,再加上HF的毒性,作為工業(yè)電解質(zhì)的應(yīng)用受到限制。
為了進(jìn)一步提高咪唑類離子液體電解質(zhì)的電導(dǎo)率,并降低黏度,同時(shí)保持較高的電化學(xué)窗口,咪唑類離子液體結(jié)合疏質(zhì)子有機(jī)溶劑PC和EC作為混合電解液得到了較多的研究。A.B.McEwen等將2mol/L的EMIPF6溶解于AN中,作為超級(jí)電容器電解液,最高電導(dǎo)率可達(dá)60mS/cm。
咪唑類離子液體除了對(duì)陰、陽(yáng)離子的選擇外,陽(yáng)離子的取代和陰離子的氟化也得到了一定的研究。從陽(yáng)離子的取代來看,EMI+咪唑環(huán)上2號(hào)位上的H活性比較強(qiáng),當(dāng)H被穩(wěn)定性較強(qiáng)的烷基取代后,離子液體的穩(wěn)定性也得到了增強(qiáng)。Z.Zhou等用全氟離子液體[EMI]RfBF3作為超級(jí)電容器的電解質(zhì),發(fā)現(xiàn)穩(wěn)定性和循環(huán)性能較差,尤其是循環(huán)性能損失較大(2d損失50%),限制了實(shí)際應(yīng)用。J.Barisci等采用離子液體電解質(zhì),對(duì)碳納米管(CNT)電極進(jìn)行了研究,發(fā)現(xiàn)CNT具有較好的活性和比電容。
L.Kavan等以BMIBF4作為電解質(zhì),對(duì)單壁CNT、雙壁CNT及富勒烯電極的電化學(xué)性能進(jìn)行了研究,結(jié)果表明:這些電極材料具有明顯的超級(jí)電容器特征。H.T.Liu等對(duì)以BMIPF6為電解液、中孔鎳基混合稀土氧化物為陽(yáng)極材料、AC為負(fù)極材料的混合電容器進(jìn)行研究,電容器呈現(xiàn)出較高的比功率(458W/kg)和比能量(50Wh/kg),500次循環(huán)后,電容沒有明顯的衰減。
離子液體還被應(yīng)用于合成超級(jí)電容器聚合物電極材料的研究中。C.Arbizzani等用恒流極化法制備了P型摻雜聚合體pMeT,反應(yīng)池中的溶液為EMITFSI,通過添加HTFSI而不消耗離子液體,其中的H+被還原為H2,在負(fù)極生成(MeT0.3+TFSI-0.3)n聚合體。以這種聚合體為電極材料、EMITFSI為電解質(zhì)的混合電容器,呈現(xiàn)出250F/g的高比電容。
1.2吡咯烷類離子液體
吡咯烷類離子液體屬于環(huán)狀季銨鹽,由于吡咯烷陽(yáng)離子取代的不對(duì)稱性而具有較低的熔點(diǎn),電導(dǎo)率較高。
N-丁基-N-甲基吡咯二(三氟甲基磺酰)亞胺鹽(PYR14 TFSI)在高溫下的電化學(xué)和熱穩(wěn)定性優(yōu)良,受到了廣泛的關(guān)注。A.Balducci等用PYR14TFSI離子液體作為AC/pMeT混合超級(jí)電容器電解質(zhì),電容器在60℃、10mA/cm2及1.5~3.6V的條件下充放電16000次后,綜合性能較好,尤其是高溫電容保持能力。
離子液體的能量密度和功率密度較高,說明吡咯烷類離子液體可提高混合電容器在高溫(60℃)下的電壓窗口和循環(huán)壽命。A.Balducci等對(duì)使用離子液體PYR14TFSI的微孔活性炭對(duì)稱電容器電解液進(jìn)行了研究,電容器的電阻在40000次循環(huán)后基本沒有變化(9Ωcm2),60℃時(shí)的電壓窗口為3.5V,電極材料的比電容為60F/g。這種超級(jí)電容器可以作為高溫電容器,在實(shí)際中使用。
M.Lazzari等研究了離子液體電解質(zhì)PYR14TFSI和EMITFSI與AC界面的作用,發(fā)現(xiàn)陰極充電時(shí),碳電極的電容很大程度上決定于離子液體陽(yáng)離子的極化性,即取決于影響雙電層的介電性和陽(yáng)離子的種類;碳的多孔及界面的化學(xué)性質(zhì),也是影響電導(dǎo)率和離子液體極化性的重要因素。
致力于離子液體(ILs)研發(fā)生產(chǎn)、應(yīng)用推廣和全球銷售,擁有自主知識(shí)產(chǎn)權(quán)生產(chǎn)技術(shù),產(chǎn)品質(zhì)量和一致性因此得到保障,Tel:021-38228895